Incorporation of a novel nucleobase allows stable oligonucleotide-directed triple helix formation at the target sequence containing a purine·pyrimidine interruption

Dominique Guianvarc'h,*^a* **Rachid Benhida,***^a* **Jean-Louis Fourrey,****^a* **Rosalie Maurisse***^b* **and Jian-Sheng Sun****^b*

a Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse 91198. Gif-sur-Yvette Cédex, France. E-mail: fourrey@icsn.cnrs-gif.fr; Fax: +33-1-69077247; Tel: +33-0169283053

b Laboratoire de Biophysique, UMR 8646 CNRS-Muséum National d'Histoire Naturelle, INSERM U201,

Tel: +33-01407937

Received (in Cambridge, UK) 25th April 2001, Accepted 21st July 2001 First published as an Advance Article on the web 23rd August 2001

Thermal denaturation experiments have established that an oligonucleotide incorporating the artificial nucleobase S, does form a stable triplex with a double stranded DNA which exhibits a pyrimidine interruption within the oligopurine sequence.

For many years, triple helix-forming oligonucleotides (TFOs) have been known to be able to bind in the major groove of oligopyrimidine·oligopurine sequences of double-stranded DNA (dsDNA). TFOs establish specific hydrogen bonds with the oligopurine strand of dsDNA through the formation of $T\text{-}A\times\overline{T}$ and $C\text{-}G\times C^+$ base triplets¹ in Hoogsteen (pyrimidinemotif, Fig. 1) or T·A \times A and T·A \times T, and C·G \times G triplets in reverse Hoogsteen configuration (purine- or mixed-motif).2 Hence, dsDNA sequence recognition by TFOs has potential applications in gene expression modulation and in gene targeting technologies.3 Unfortunately, these interesting applications must be restricted to long oligopyrimidine·oligopurine sequences only $($ > about 15 bp) since any interruption by even a single A·T or G·C base pair strongly destabilizes triple helix formation.4 Consequently, during the last decade, considerable efforts have been devoted, so far with limited success, to circumvent such a sequence limitation.5 Two approaches have been undertaken to design and synthesize: (1) new base analogs featuring an extended heterocyclic ring system for achieving specific hydrogen bonds with all hydrogen bond-forming sites available in the major groove side of the inverted A·T and G·C base pairs;⁶ (2) nucleobases capable of stabilizing, nonsequence-specifically, triple helix formation at the purine·pyrimidine interruption sites, either by the attachment of an intercalating agent in conjunction with an appropriate nucleobase, or by a nucleobase alone.7 The second strategy (universal base approach) has been more successful than the first (specific base approach). In the literature, a 4-(3-benzamidophenyl)imidazole (D_3) has been shown to equally stabilize the triplex at both A·T and G·C sites.6*a* Subsequent NMR studies showed that the binding mode is intercalation^{6*b*} which is consistent with the lack of base pair discrimination.

In this work, a new base analog (**S**) has been synthesized and incorporated into a TFO in an attempt to achieve better triplex stabilization than the D_3 nucleobase at the purine-pyrimidine sites within its cognate dsDNA sequence. Compared to D_3 the **S** nucleobase consists of two unfused aromatic rings which are linked to 2'-deoxyribose by an acetamide motif instead of a three ring construct attached directly to 2'-deoxyribose (Fig. 2). The synthesis of the required phosphoramidite **5** to serve for the incorporation of **S** in TFOs is straightforward. Thus, compound **2**, readily obtained by catalytic hydrogenation of 2-acetamido-4-(3-nitrophenyl)thiazole **1**,8 was acylated with 2-(2-deoxy-5-*O*-dimethoxytrityldeoxyribosyl)acetic acid **3**⁹ using 2-chloro-1-methylpyridinium iodide. Finally, the resulting derivative **4** was phosphitylated in the usual manner to give the desired phosphoramidite **5** (Scheme 1).

The capacity of triple helix stabilization of the novel nucleobase **S** was assessed in a model system where **S** was incorporated in the middle of a 18-mer TFO (at position Z)¹⁰ and was screened against all four possible base pairs $(X \cdot Y =$ T·A, C·G, A·T or G·C) in the target oligopyrimidine·oligopurine sequence (Table 1). The thermal denaturation experiments¹¹ indicated that the T_m value of the triplex containing an $A \cdot T \times S$ triplet $(T_m = 50 \degree C)$ was very close to those of perfect triplexes without any interruption of oligopyrimidine·oligopurine sequences (T·A \times T or C·G \times C⁺, T_m = 51 or 50 °C, respectively). It was noted that the use of **S** base provides a 5–8 °C triplex stabilization as compared to the best base triplet made of natural bases (A·T \times **S** *vs.* A·T \times G; G·C \times **S** *vs.* G·C \times T), respectively. In terms of triplex stability, the novel **S** nucleobase is at least as good as the previously reported **D3** base. The main difference

Fig. 1 Canonical T $A \times T$ and $C \cdot G \times C^+$ base triplets in Hoogsteen configuration (pyrimidine-motif). $R = 2'$ -deoxyribosyl.

† Electronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b1/b103743a/

Fig. 2 Structures of the 2'-deoxynucleosides featuring nucleobases S and **D3**.

⁴³ rue Cuvier 75231. Paris Cedex 05, France. E-mail: sun@mnhn.fr; Fax: +33-1-69077247;

Scheme 1 *Reagents and conditions*: (a) H₂, Pd/C, EtOH–AcOH, 95%. (b) 2-Chloro-1-methylpyridinium iodide, NEt₃, CH₂Cl₂, 60 °C, 90%. (c) 2-Cyanoethyl diisopropylchlorophosphoramidite, *N*,*N*-diisopropylethylamine, $CH₂Cl₂$, rt, 75%.

between S and D_3 is the observation that the S nucleobase can discriminate, to some extent, an A·T base pair from others (namely $A-T\times S$ *vs.* G·C $\times S$, T·A $\times S$ and C·G $\times S$). It is worth noting that there is evidence that the aminothiazole moiety of **S** is involved in the A·T base pair recognition as the replacement of the heterocyclic moiety of **S** by aniline caused a 14 °C decrease in T_m and abolished base pair discrimination. However, additional studies¹² are needed to obtain the definitive structural arguments which would validate the recognition pattern proposed in Fig. 3. In this scheme the triple between the A·T base pair and **S** is characterized by the establishment of three hydrogen bonds to the N7 atom and the 6-amino group of adenine, and to the 4-oxo group of thymine in a co-planar arrangement. According to this scheme, steric hindrance

Table 1 Sequence of the triple helices studied in this work. Melting temperature (T_m) of all combinations of base triplets at the X·Y \times Z site. Estimated accuracy of the melting temperatures is ± 1 °C

 \mathbf{I}

Fig. 3 Model proposed for the specific recognition of an A·T base pair by nucleobase **S**. $R = 2$ '-deoxyribosyl. Putative steric interaction in the plane of the A·T×S triple is indicated (see text).

between the C5 methyl of T in the oligopurine-rich target strand and the deoxyribose moiety of **S** can be anticipated. Indeed, when T was replaced by U in the target strand, a further stabilization of the triplex featuring an A·U×S triplet was observed with the T_m increasing by 3 °C. Such an observation is consistent with the proposed mode of recognition (Fig. 3).

In conclusion, this work shows that a novel **S** nucleobase when incorporated into a pyrimidine-motif TFO can effectively circumvent a purine·pyrimidine base pair interruption in an oligopyrimidine·oligopurine sequence. This outstanding property of **S** opens new perspective as it could be exploited as a lead compound, in both universal base or specific base approaches, to develop new nucleobases capable of achieving sequencespecific recognition of further extended dsDNA sequences by oligonucleotide-directed triple helix formation.

Notes and references

- 1 The symbols \cdot and \times stand for Watson–Crick and Hoogsteen-like hydrogen bonding, respectively.
- 2 (*a*) T. Le Doan, L. Perrouault, D. Praseuth, N. Habhoud, J. L. Decout, N. T. Thuong, J. Lhomme and C. Hélène, *Nucleic Acids Res.*, 1987, **15**, 7749; (*b*) H. E. Moser and P. B. Dervan, *Science*, 1987, **238**, 645. For reviews see (*c*)–(*e*) (*c*) N. T. Thuong and C. Hélène, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 666; (*d*) M. T. Frank-Kamenetskii and S. M. Mirkin, *Annu. Rev. Biochem.*, 1995, **64**, 65; (*e*) S. Neidle, *Anti-Cancer Drug Des.*, 1997, **12**, 433.
- 3 (*a*) J. L. Maher III, *Cancer Invest.*, 1996, **14**, 66; (*b*) C. Giovannangeli and C. Hélène, *Antisense Nucleic Acid Drug Dev.*, 1997, **7**, 413; (*c*) K. M. Vasquez and J. H. Wilson, *Trends Biochem. Sci.*, 1998, **23**, 4; (*d*) D. Praseuth, A. L. Guieysse-Peugeot and C. Hélène, *Biochim. Biophys. Acta*, 1999, **1489**, 181.
- 4 (*a*) J. L. Mergny, J. S. Sun, M. Rougée, T. Garestier, F. Barcelo, J. Chomilier and C. Hélène, *Biochemistry*, 1991, **30**, 9791; (*b*) W. A. Greenberg and P. B. Dervan, *J. Am. Chem. Soc.*, 1995, **117**, 5016; (*c*) G. C. Best and P. B. Dervan, *J. Am. Chem. Soc.*, 1995, **117**, 1187.
- 5 (*a*) Reviews: J. S. Sun and C. Hélène, *Curr. Opin. Struct. Biol.*, 1993, **3**, 345; (*b*) S. O. Doronina and J. P. Behr, *Chem. Soc. Rev.*, 1997, 63; (*c*) D. M. Gowers and K. R. Fox, *Nucleic Acids Res.*, 1999, **27**, 1569 and references cited therein.
- 6 (*a*) L. C. Griffin, L. L. Kiessling, P. A. Beal, P. Gillespie and P. B. Dervan, *J. Am. Chem. Soc.*, 1992, **114**, 7976; (*b*) K. M. Koshlap, P. Gillespie, P. B. Dervan and J. Feigon, *J. Am. Chem. Soc.*, 1993, **115**, 7908; (*c*) C. Y. Huang, C. D. Cushman and P. S. Miller, *J. Org. Chem.*, 1993, **58**, 5048; (*d*) C. Y. Huang, G. Bi and P. S. Miller, *Nucleic Acids Res.*, 1996, **24**, 2606; (*e*) T. E. Lehmann, W. A. Greenberg, D. A. Liberles, C. K. Wada and P. B. Dervan, *Helv. Chim. Acta*, 1997, **80**, 2002; (*f*) I. Prévot-Halter and C. J. Leumann, *Bioorg. Med. Chem. Lett.*, 1999, **9**, 2657.
- 7 (*a*) S. Kukreti, J. S. Sun, T. Garestier and C. Hélène, *Nucleic Acids Res.*, 1997, **25**, 4264; (*b*) S. Kukreti, J. S. Sun, D. Loakes, D. M. Brown, C. H. Nguyen, E. Bisagni, T. Garestier and C. Hélène, *Nucleic Acids Res.*, 1998, **26**, 2179; (*c*) D. A. Gianolio and L. W. McLaughlin, *J. Am. Chem. Soc.*, 1999, **121**, 6334.
- 8 C. D. Hurd and N. Karasch, *J. Am. Chem. Soc.*, 1946, **68**, 658.
- 9 J. Hovinen and H. Salo, *J. Chem. Soc., Perkin Trans. 1*, 1997, 3017.
- 10 The identity and homogeneity of the 18-mer was confirmed by MALDI-TOF [M calc. 5502.8; found m/z 5501.5 (M - H)⁻] and RP-HPLC.
- 11 DNA thermal denaturation and renaturation experiments were carried out by first mixing I and II strands (1.2 and 1.0 μ M, respectively), then adding $1.5 \mu M$ of TFO (III) in a 10 mM cacodylate buffer (pH 5.9) containing 100 mM NaCl, 10 mM $MgCl₂$ and 0.5 mM spermine.
- 12 A comprehensive NMR study is under way with an intramolecular system consisting of a 31-mer in order to establish the recognition mode either within the $A-T\times S$ triple and/or between the adjacent bases. Results will be reported in due course.